CONSTANTS

Description	Value
Avogadro's number	6.02×10^{23}
Molar gas volume at STP	22.4 L
Ideal gas constant (<i>R</i>)	8.31 J/K = 0.0821 L•atm/(mol•K)
Heat of fusion of water (ΔH_f)	334 J/g = 80 calories/g
Heat of vaporization of water (ΔH_{v})	2260 J/g = 540 calories/g
Specific heat of water (liquid)	4.18 J/(g•°C) = 1.0 calorie/(g•°C)
Specific heat of water (solid or vapor)	2.09 J/(g•°C) = 0.50 calorie/(g•°C)
Standard atmospheric pressure	1 atm = 760 torr = 101.325 kPa (kilopascals) = 760 mm Hg
Acceleration of gravity on Earth (<i>g</i>)	9.8 m/s ²
Speed of light in a vacuum (<i>c</i>)	3.00 × 10 ⁸ m/s
Planck's constant (<i>h</i>)	6.63 × 10 ^{−34} J•s = 4.14 × 10 ^{−15} eV•s
Charge of electron	−1.60 × 10 ⁻¹⁹ C
Coulomb's constant (<i>k_e</i>)	9.0 × 10 ⁹ N•m²/C²
Gravitational constant (G)	6.67 × 10 ^{−11} N•m²/kg²

1 calorie (cal)	4.184 J
Kelvin/Celsius conversion	$T_K = T_C + 273$

Description	Formula
ldeal gas law	PV = nRT
Boyle's law	$\frac{V}{V'} = \frac{p'}{p}$
Charles' law	$\frac{V}{V'} = \frac{T}{T'}$
Constant acceleration	$v = v_i + at$
	$x = x_i + v_i t + \frac{1}{2} a t^2$
	$v^2 = v_i^2 + 2a(\Delta x)$

FORMULAS

FORMULAS (continued)

Description	Formula
Mechanics	F = ma
	p = mv
	$J = F\Delta t$
	$F_f = \mu F_N$
Universal law of gravitation	$F = \frac{Gm_1m_2}{r^2}$
Spring	F = -kx
	$PE = \frac{1}{2}kx^2$
Pendulum	$T = 2\pi \sqrt{\frac{L}{g}}$
Wave relationship	$v = f\lambda$
Frequency of a wave	f = 1/T
Heat	$\Delta Q = mc\Delta T$
	$\Delta Q = m \Delta H$
Energy	$KE = \frac{1}{2}mv^2$
	PE = mgh
Ohm's law	V = IR
	1

Power
Power
Series resistance
Parallel resistance
Magnetic field of a solenoid

$$P = \frac{E}{t} = IV$$

$$R_{Series} = R_1 + R_2 + R_3 + \dots$$

$$\frac{1}{R_{Parallel}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

$$B = \frac{\mu NI}{L}$$

NOTES FOR THE GENERAL SCIENCE TEST

Not all formulas necessary are listed, nor are all formulas listed used on this test.

In questions on electricity and magnetism, the term *current* refers to "conventional current" and the use of the right-hand rule is assumed.